
1086 KSME International Journal, Vol. 18 No. 7, pp. 1086~ 1093, 2004 

Modal Analysis of Constrained Multibody Systems 
Undergoing Constant Accelerated Motions 

Dong Hwan Choi, Hong Hee Yoo* 
School o f  Mechanical Engineering, Hanyang University, Seoul 133-791, Korea 

The modal characteristics of constrained multibody systems undergoing constant accelerated 

motions are investigated in this paper. Relative coordinates are employed to derive the equations 

of motion, which are generally nonlinear in terms of the coordinates. The dynamic equilibrium 

position of a constrained multibody system needs to be obtained from the nonlinear equations 

of motion, which are then linearized at the dynamic equilibrium position. The mass and the 

stiffness matrices for the modal analysis can be obtained from the linearized equations of 

motion. To verify the effectiveness and the accuracy of the proposed method, two numerical 

examples are solved and the results obtained by using the proposed method are compared with 

those obtained by analytical and other numerical methods. The proposed method is found to be 

accurate as well as effective in predicting the modal characteristics of constrained multibody 

systems undergoing constant accelerated motions. 
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I. Introduction 

Mechanical systems can be modeled as con- 

strained multibody systems that consist of rigid 

and flexible bodies, joints, springs, dampers, 

forces and so on. In general, the equations of 

motion governing constrained multibody systems 

consist of nonlinear differential and algebraic 

equations. To obtain the response of a con- 

strained multibody system, several computation- 

al methods (Sheth et al., 1972; Orlandea et al., 

1977; Paul, 1977; Haug et al., 1982) have been 

introduced since early 1960's. Several commercial 

programs for multibody system analysis (for in- 

stance, ADAMS, DADS, and RecurDyn) are av- 

ailable nowadays. By using these programs, kine- 

matic, dynamic, and static equilibrium analyses 
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of constrained multibody systems can be per- 

formed. If a constrained multibody system has 

a static equilibrium position, its modal charac- 

teristics, which are often important for system 

design, can be also obtained. Equations of motion 

are linearized at the static equilibrium position 

and the mass and the stiffness matrices for the 

modal analysis can be obtained. Sohoni and 

Whitesell (1986) introduced a linearization me- 

thod based on a generalized coordinate parti- 

tioning method in which dependent coordinates 

are eliminated. Lynch and Vanderploeg (1995) 

proposed another linearization method employ- 

ing QR decomposition by which a constrained 

set of equations can be converted to an uncon- 

strained set of equations. By using these methods, 

the modal characteristics of a constrained multi- 

body system in state of rest could be obtained. 

There exists a state of dynamic equilibrium 

which resembles static equilibrium. In the state of 

dynamic equilibrium, a part of the generalized 

coordinates have constant values even though the 

system varies with time. Therefore, in the state 

of motion, one may choose a set of generalized 
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coordinates which become constant. This state 

which is determined by the set of generalized 

coordinates will be hereinafter called a dynamic 

equilibrium state. The dynamic equilibrium state 

of the system can be easily calculated if a proper 

generalized coordinate is chosen. Therefore it is 

important to choose a proper set of generalized 

coordinates if one has the purpose to find the 

dynamic equilibrium state effectively. Relative 

angles and displacements between bodies are the 

best candidates for the purpose. Such coordinates 

are often called relative coordinates. Bae and 

Haug (1987) introduced a multibody formula- 

tion by employing relative coordinates. However, 

they did not provide a method either to find 

the dynamic equilibrium state or to calculate the 

modal characteristics of a constrained multibody 

system. 

Constrained multibody systems undergoing 

constant accelerated motions exhibit distinct mo- 

dal characteristics. As their accelerations vary, 

their natural frequencies usually vary, too. The 

varying modal characteristics need to be predict- 

ed accurately for a proper system design. How- 

ever, to the best of the authors' knowledge, the 

varying modal characteristics cannot be calculat- 

ed directly by using any existing multibody an- 

alysis programs (though some of them have the 

capability to calculate the modal characteristics 

of constrained multibody systems in states of 

rest). Actually, even dynamic equilibrium states 

cannot be calculated efficiently by using any 

existing commercial codes. To obtain a dynamic 

equilibrium state of a constrained multibody sys- 

tem (by using existing commercial codes), a tran- 

sient dynamic analysis should be performed with 

a prescribed motion, which increases smoothly 

and reaches constant acceleration. Then the mo- 

dal characteristics can be obtained by analyzing 

the oscillatory motion around the dynamic equi- 

librium state. If the system has one degree of 

freedom, one may count the number of oscillation 

to find the natural frequency. However, if the 

system has more than one degree of freedom, the 

oscillatory motion has to be analyzed by using a 

Fourier transformation method. This procedure 

is time consuming and obviously not proper for 

design. 

The purpose of this paper is to propose a 

numerical method to calculate the modal char- 

acteristics of constrained muhibody systems un- 

dergoing constant accelerated motions. Relative 

coordinates are employed to describe a con- 

strained multibody system and a velocity trans- 

formation matrix is employed to derive the equa- 

tions of motion. If the system has closed kine- 

matic loops, constraint forces arising from the 

closed loops can be eliminated by using the ve- 

locity transformation matrix. A formulation to 

seek the dynamic equilibrium state of a con- 

strained multibody system undergoing constant 

accelerated motions is first presented. Then lin- 

earization procedures for open and closed loop 

systems are presented. To verify the effectiveness 

and the accuracy of the proposed method, nu- 

merical examples are solved and the results are 

compared with those obtained by other methods. 

2. Equations of Motion 

In 3 dimensional space, a free rigid body's 

configuration can be determined by six coor- 

dinates. Three scalar variables are employed to 

determine the position of a point (for instance, 

the center of mass) fixed in the rigid body and 

three successive rotation angles (often named as 

Euler angles) are employed to determine the ori- 

entation of the body. The coordinate set of the 

i-th body of a multibody system is denoted as xi. 

If a multibody system consists of n rigid bodies, 

its total coordinate set (named and denoted as a 

Cartesian coordinate set x) consists of n coordi- 

nate sets as follows: 

x = [ x ~  x l  "" x~.] ~ (1) 

By employing the Cartesian coordinate set, the 

equations of motion of a constrained multibody 

system can be derived (Nikravesh, 1988) as 

follows : 

M~ + ~TA---- Q (2) 

where M is a mass matrix, Q is a generalized 

force matrix, and 2 is a Lagrange multiplier 



1088 Dong Hwan Choi and  Hong Hee Yoo 

matrix. The matrix ~ represents algebraic con- 

straint equations that originate from kinematic 

joints and ~x is the Jacobian matrix which is 

the partial derivative of the constraint equations 

with respect to the Cartesian coordinate set. 

A closed loop multibody system can be trans- 

formed into a open loop multibody system by 

cutting joints as shown in Fig. 1. The number of 

cut joints is same as the number of closed loops. 

The constraint equations that originate from the 

cut joints are denoted as ~c and the rest of the 

constraint equations are denoted as ~r .  So, the 

total constraint equations consists of the two sets 

of equations as follows : 

~ =  ~ c r  ~ r r ] r  (3) 

Now Eq. (2) can be rewritten as follows: 

Mx-~- (~xCT AC-~ - ~xrT/~ r =  Q (4) 

where A c and A r represent the Lagrange multi- 

pliers for qjc and ~r, respectively. 

The equations of motion can be transformed 

into a reduced form by employing relative coor- 

dinates. For the purpose, the following relation is 

often employed. 

x = B q  (5) 

where q is the time derivative of relative coor- 

dinates q and the transpose of g is the null 

space of ~r .  This relation is often called the 

velocity transformation (Kim and Vanderploeg, 

1986). One may choose some of q (which will 

Fig. 1 

~ cut 

" ' - ~  (If 

Schematic representation of a closed loop 
system 

be denoted as qe) to prescribe a constant acc- 

eleration for a constrained multibody system. The 

rest of q will be denoted as qR. Then, Eq. (5) can 

be rewritten as follows : 

X= Bp(1p + BR(1R (6) 

Now, by differentiating Eq. (6), the following 

equations can be obtained. 

Yc= Bpi1P + BRiIR + BP(Tp + BR(TR (7) 

Now substituting Eq. (7) into Eq. (4) and pre 

-multiplying the results by Be r, one obtains the 

following equation. 

B~[M(Be~IP+BR~I~+BPflP+BRqR) (8) 
+ ~xCr2 c + ~xrr;, R ] = B r O 

Note that grRC~x rr is the null matrix since is the 

null space Be r of ¢IJx rT. Now the following rela- 

tion can be used to further simplify the above 

equation. 

~ q _ O ~  Ox =~x Ox (9) 
3x OqR O~R =~xBe 

where the dot cancellation law (Rosenberg, 

1977) is employed. By using Eq. (9), Eq. (8) can 

be rewritten as follows: 

M*iIR cr ~ • +~q+A - q  (10) 

where 

M* =BrMBR (11) 

Q*=B$ Q -  B~ (MBeiIP + MBP~1e + MBR~1R) (12) 

The acceleration constraint equations, the second 

time derivatives of the constraint equations ~ c = 0 ,  

can be written as follows : 

~ , i ~ R =  r c (13) 

where 

7 c = -  ( ~ % q R )  " 2 ~%tqR--(I)CtC • (14) 

Equations (10) and (13) are used to perform a 

dynamic analysis of a constrained multibody sys- 

tem undergoing a constant accelerated motions. 

3. L inear iza t ion  and M o d a l  
Equat ion 

In order to find the modal characteristics of a 
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constrained multibody system undergoing con- 

stant acceleration motions, the dynamic equili- 

brium state of the system has to be found first. At 

the dynamic equilibrium state, qR and ilR be- 

come zero. Substituting these relations into the 

equations of motion (10), one obtains the fol- 

lowing equation. 

Br[MBP~Iv +MBp~IP- Q] + ~ / A c = 0  (15) 

Since qp are chosen for translational motion, the 

sub-matrix Be should be constant matrix. There- 

fore the time derivative of B~ becomes zero. So, 

the following algebraic equations are obtained to 

find the equilibrium state. 

T "" c T  c _  BR[MBvqP-Q]+~q~A --0 (16) 

The above equations along with the constraint 

equations ( ~ c = 0 )  have to be solved to find the 

dynamic equilibrium state. Since these equations 

are nonlinear, the well-known Newton-Raphson 

procedure can be used to solve them. By solving 

the equations, qR and 2 c can be obtained. The 

values of qR which are obtained from the equili- 

brium equations will be used later to obtain the 

modal equations. 

To obtain the modal equations, Eq. (10) has to 

be transformed into a minimum set of equations 

of motion. For the purpose, qR should be parti- 

tioned as follows: 

q R = [ u  r vr~ r (17) 

where u and v represent dependent and inde- 

pendent coordinate sets, respectively. Several me- 

thods (Wehage and Haug, 1982; Nikravesh and 

Srinivasan, 1985) of selecting independent coor- 

dinate sets are known. Now, OR can be express- 

ed as a function of the independent velocity vector 

0 as follows: 

OR=RO 18) 

where R is defined as follows : 

Pre-multiplying Eq. (10) by R r results In a 

minimum set of equations of motion as follows: 

RrM*R~)+RrM*Ro-RrQ*=O (20) 

Note that R r is the null space of ~ [ .  Equation 

(20) can be linearized at the dynamic equilibrium 

state q~ and the following modal equations can 

be obtained to investigate the modal charac- 

teristics of the system. 

Jl* a~)+ (~* a t ) + g *  a v = 0  (21) 

where M*, C* and /~7" are the linearized mass, 

damping and stiffness matrices of the modal equa- 

tions and they can be calculated at the dynamic 

equilibrium state q~ as 

~* =RrM*R (22) 

~*=RTM*R-~-~ (RrQ .1 (23) 

/~,  O ( _ R r Q . )  (24) 
= Ov 

The simple finite difference method is employed 

to obtain them in the present study. For instance, 

the following equation represents the simple finite 

difference method to calculate /~* : 

/ ~ , =  h( v* + 3v) - h (  v*) (25) 
8v 

where h denotes - R r Q  * in Eq. (20) and v* 

represents the independent coordinate value in 

the dynamic equilibrium position q~. Note that 

Eq. (21) is a homogeneous equation. Non-homo- 

geneous terms are not needed to analyze the free 

vibration modal characteristics. 

4. Numerical  

Results and Discussion 

1 DOF (degree of freedom) swing pendulum 

system attached to a moving base which under- 

goes a constant accelerated motion is shown in 

Fig. 2. This example has an open kinematic loop. 

The uniform bar, which has mass m =  10 kg and 

length L = 1 m, is connected by a revolute joint. 

The moving base is connected to the ground by 

a translational joint. Friction force between the 

moving base and ground is not considered in this 

analysis. If the moving base is made to move with 

constant acceleration, the relative angle 0 be- 

tween the vertical axis and the pendulum remains 
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constant. Therefore the relative angle 0 is chosen 

as the generalized coordinate. The analytical 

equation of motion is derived as follows : 

1 ~.. 1 o + l m g L s i n O = O  (26) m L  0 + ~  m L a  cos T 

where a is the constant acceleration value. At 

dynamic equilibrium state, 0 becomes zero. 

Therefore, the following equilibrium equations 

are obtained. 

1 m L a  cos 0 +  1 m g L  s in  0 = 0  (27) 
2 

1 Oq - 1  m g L  cos R * = - ~ -  m L a  sin 0 = 0  (29) 

Comparing Eq. (26) to Eqs. (28) and (29), one 

can find that two linearized equations are identi- 

cal. Thus, the two numerical results for the equi- 

librium position and natural frequency should be 

identical, too. Figure 3 shows the variation of 0 

versus the acceleration of the moving base. The 

variation of the natural frequency versus the ac- 

celeration of  the moving base is shown in Fig. 4. 

Figure 5 shows a closed loop mechanism which 

This equilibrium equation is the same as the 

equation which is obtained by using the proposed 

method. The detailed derivation procedure for the 

proposed method is given in Appendix A. Using 

the proposed method, the linearized mass and 

stiffness matrices are calculated as follows : 

20* =13 m L  z (28) 

O 
i 

i 

Fig. 2 Swing pendulum attached to a moving base 
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has two closed kinematic loops. Body 1 of the sys- 

tem is the moving base which is driven toward 

- - Y  direction by a constant acceleration (~1 = 

--10.0 m/sZ); body 2 and body 3 are pendulums 

which have a sphere mass at each end ; and body 

4 is the collar. The moving base is connected to 

the ground by a translational joint. The moving 

base and the pendulums are connected by revolute 

jo in t s ;  the moving base and the collar are con- 

nected by a translational jo int  and a spring ; and 

the collar and the pendulums are connected by 

distance joints having fixed distance of 0.1092 m. 

The stiffness and the free length of the spring are 

1000 N / m  and 0.15 m, respectively. 

Table 1 shows the inertia properties of the 

constituting bodies and Table 2 shows the coor- 

dinates of some points (shown in Fig. 5) that 

determine the configuration of the system. Figure 

6 shows the topology of the system. Since this 

system has two closed loops, two distance joints 

should be cut. 

From the equil ibr ium analysis, Fig. 7 shows 

the relative distance d between body l and body 

4. At dynamic equil ibr ium state, two results are 

almost identical. To simulate this analysis using a 

commercial program, however, the body 1 should 

be accelerated smoothly and a practical damping 

Table 1 Inertia pro 

Body 

Body 1 

Body 2 

Body 3 

Body 4 

Mass 

~erties of the constituting bodies 

Moment of inertia [kg.m 2] 

Iy,y, Iz,z" 

50.0 25.0 

0.1 0.1 

0.1 0.1 

0.125 0.15 

[kg] Ix,x, 

200.0 25.0 

1.0 0.1 

1.0 0.1 

1.0 0.15 

Table 2 Initial position of points shown in Fig. 5 

Point Initial Position [m] 

ol [o.0, 0.2, 0.0] 

Oz [--0.16, 0.2, 0.0] 

O~ [0.16, 0.2, 0.0] 

O4 [0.0, 0.1256, 0.0] 

P [ -0 .08 ,  o.~, o.o] 

Q [0.08, 0.2, 0.0] 

( c t = 3 0 N s e c / m )  should be imposed to obtain 

the equil ibr ium position. Note that time integra- 

tion is required to obtain the results. However, 

cut 
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using the proposed method, the dynamic equilib- 

rium position could be obtained without time 

integration. The variation of  the natural frequen- 

cy versus the acceleration which is obtained by 

using the proposed method is also shown in 
Fig. 8. 

5. Conclusions 

In this paper, a computational algorithm is 

proposed to find the modal characteristics of 

multibody systems undergoing constant accelerat- 

ed motions. Such multibody systems are often 

found in engineering examples like launching 

rockets and missiles. The equations of motion are 

derived by employing relative coordinates and 
linearized at the dynamic equilibrium position. 

The mass and the stiffness matrices for the modal 

analysis can be obtained from the linearized equa- 

tions. To verify the effectiveness and the accuracy 

of the proposed method, two numerical examples 

are solved. The results obtained by using the pro- 

posed method are compared to those obtained 

by analytical methods. It is proved that the pro- 

posed method provides accurate modal charac- 
teristics of muhibody systems undergoing con- 

stant accelerated motions. The proposed method 

can be easily implemented into any existing multi- 

body analysis programs. Since the method does 
not necessitate numerical integration, it is superi- 

or to any existing methods that employ numerical 

integration. 
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0 

A p p e n d i x  A 0 

Derivation of Equation o 
0 

The equilibrium equation of the open loop 

system undergoing constant accelerated motion is 

as follows 

B~ (MBP~IP - Q) = 0  (a l) 

where ~p is given as a constant value a and Be, 

MR, and Q are given as 

0 

0 

0 

0 

0 

0 

BR = L ~ - c o s  0 

L . 
~ - s m  0 

0 

0 

0 

1 

0 

0 

0 

0 

0 
0 

Q =  (a2) 
0 

- m E  
0 

0 

0 

0 

N ow  

obtain the following equation. 

112 m L a c o s  O+ 1 m g L s i n  0 = 0  

This result is identical to Eq. (27) 

obtained by analytical method. 

substituting Eq. (a2) into Eq. (a l ) ,  one can 

(a3) 

which is 




